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Abstract—To model the crack—fiber interaction in the case of matrix cracking in short fiber
composites, the plane problem of an elastic elliptical inclusion interacting with an arbitrarily oriented
crack is solved, where the fiber is modeled as an elliptical inclusion. Complex potentials presented
by Stagni and Lizzio (1983, J. Appl. Phys. A30, 217-221) are used to obtain the Green’s function
for this problem. The problem is formulated in terms of systems of singular integral equations which
are solved numerically. Some detailed results are given for various crack and fiber geometries and
fiber and matrix material combinations.

1. INTRODUCTION

To increase the application of short fiber reinforced composites, their behavior under
different loading conditions should be understood. For example, matrix cracks may develop
under monotonic and cyclic loadings in the case of weak fiber—matrix interface. This will
result in a change in stiffness and strength of the material. Also, the understanding of the
interaction of the already existing crack with the fiber is very important because one possible
mechanism of toughening is the deflection of the crack by the existence of the fiber. Crack
growth in short fiber composites can be studied by applying the following crack—inclusion
interaction model where the effect of the presence of the inclusion can be seen in the change
in stress intensity factors.

There have been a number of studies to understand the effect of inclusions on fracture.
In previous work, specific studies on crack inclusion problems, such as circular inclusion—
crack interaction or rigid elliptical inclusion—crack interaction problems, have been con-
ducted. This study is more general since it allows for general elastic elliptical inclusions rang-
ing in stiffness from a hole to a rigid inclusion. Atkinson (1972) used the solution of the edge
dislocation—circular inclusion interaction problem presented by Dundurs and Mura (1964)
to analyse the interaction between a crack with a circular inclusion. He set up the problem
in terms of the distribution of dislocations and solved the resulting integral equations.
Erdogan et al. (1974) studied the interaction between a circular inclusion and an arbitrarily
oriented crack. They used a method similar to that of Atkinson’s. Erdogan and Gupta
(1975) later solved the case where the crack crosses the interface.

Elliptical inclusions were considered later than circular inclusions. Warren (1983) used
an infinite series to formulate the problem where the edge dislocation is inside the elliptic
inclusion. He later used the solution to study the stress field around a crack at the tip of a
craze (Warren, 1984). Xue-Hui and Erdogan (1986) studied the interaction of a crack with
a flat inclusion using the potentials given by Dundurs (1969) as Green’s functions. Santare
and Keer (1986) presented the solution for the interaction of an edge dislocation outside
of a rigid elliptical inclusion. Using that solution to formulate the Green’s functions, Patton
and Santare (1990) studied the effect of a rigid elliptical inclusion on a straight crack. They
later used this solution to study crack deflection near rigid inclusions and holes (1992). Wu
and Chen (1990) solved the case where the crack was inside an elastic ellipse, where the
crack extends from focus to focus of the ellipse. Luo and Chen (1991) modeled the matrix
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Fig. 1. Geometry of the problem: (a) physical; (b) mapped plane.

cracking by using a three phase cylindrical model. In an earlier paper, Anlas and Santare
(1992) presented the solution for the case where an arbitrarily oriented crack is located
inside an elliptical inclusion. This solution is later used to model fiber cracking in short
fiber composites.

In this paper, the solution for an arbitrarily oriented crack interacting with an elastic
elliptical inclusion is given. It is assumed that the elastic matrix contains short fibers that
are distributed in such a way that there is no mechanical interaction between any two fibers.
The only interaction is between the crack and the short fiber which is modeled as an elliptical
inclusion. The crack is formulated in terms of a distribution of dislocations. Resulting
integral equations are solved for the dislocation distribution which is used to calculate stress
intensity factors.

2, THE STRESS FIELD FOR THE INTERACTION BETWEEN AN EDGE DISLOCATION AND
ELLIPTICAL INCLUSION

Consider an elastic matrix, denoted as region 1, with elastic constants u; and x,
containing a perfectly bonded elliptical elastic inclusion, denoted as region 2, with elastic
consants k, and y,, where u; is the shear modulus and x, = 3 —4v, for plane strain and
k; = (3—v;}/(1+v,) for plane stress, and v; is the Poisson’s ratio. The matrix contains an
edge dislocation at point z, (see Fig. 1).

Stresses and displacements can be written in terms of the complex potentials as defined
by Muskhelishvili (1953):

Oyt 0y =29 (D) +¢' ()], (1)
Gy Oy + Zia‘\'_\‘ = 2[27¢”(:) + W/(Z)]a (2)
24 1) = wb(E) 24—V ) o)

The primes denote the derivatives with respect to z, where z = x+1iy, the overbar denotes
the complex conjugate and i is the imaginary number. The stress field in the matrix with the
dislocation has been solved in terms of the complex potentials ¢ and ¢ presented by Stagni
and Lizzio (1983).

The geometry of the problem is simplified by mapping the ellipse into the unit circle
as shown on Fig. 1, the function used is
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The complex potentials ¢, and ¥, for region 1 are
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In these expressions, y; = p b/in(x,+ 1), where b = b, +1b,, and b, and b, are the Cartesian
components of the Burger’s vector. The constants ¢, and dj in the series are defined in the
Appendix.

Therefore, after some manipulations, we can write the stresses in region 1 as:

2 =]
C(O + C Z Ckak_]

T = RC= L) Co—m) T R —m) &,
. Lo G H]
+Cony [V‘ RC—To)Co—m) T RC—m) 2 ¥F¢

meE 2@ +m) o
+R [ TRC—T) Col—m)® T RCC—m)® 2 K

M‘” ez o Lo
RE—m)T L k=D =T e S G = m)

— (m+{0)COC2 CZ © -
T RC Lo’ Col—m)? ~ R —m) & ¢

{2ml* =3m*(2—{—m) & -1 €3(1+ Cz d e 2

+

@ roos
V RC—Co)Clo—m) T RC —m) 2 ¢

@ -

RC—Co)@o—m) T RC=m) 2 K ]

3 (m+{HEL° 2mc’(52+m)
Re [Y' FRC—C0) (Col—m)? T RO =

(& +m)C4 il 5 {Lo
kk k— k—2
R(C2 Z (e=1x R(C“Co)(ao—m)

_ (m'*'fo)CoCz ¢2 ® .
T RC— L) Col—m)? ~ RE =) & %K

ot 3O om) & (1
T § it O S ket ] o

+Conj [y,

Z kkgk 1




1704 G. AnLAs and M. H. SANTARE

S im[' (f’l1+L Wal? 7mg (" +m) Z %
= PER(E— L)L)t RO —m)?t & %

(g m)t & ;o - e
yE T ekl DI ’

R(Q R~ (g —m)
(m+{3)¢¢ - a
+71 A g 2 kS
IkoR(k “““ é()) (Cué-"”) R({™ —m) /_4 ke
k (mg =3P = —m) A e +.vm ) 7 J )
N R —m)? ‘u}‘{f‘;‘k T ORG—m)? ~ Y(;‘A(k b - ®

These stresses can be separated into bounded and singular portions. The singular
portions representing the dislocation and its image points, the bounded portion representing
the interaction for the case where the crack is fully imbedded in the matrix without touching
the interface. The bounded parts of the stresses are calculated by matching the tractions
and displacements along the elliptical contour which is mapped to the unit circle. The
resulting terms are the series terms of the expressions above:
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The singular portions of the stresses are the remaining terms which are not represented
in the above series.
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Fig. 2. Problem geometry.

3. INTEGRAL EQUATIONS

A crack can be represented by a distribution of dislocations. In this case the distribution
is unknown, but the resulting crack faces are assumed to be traction free. This condition
can be expressed by the following integral equations:

z; Z2 1
J 2 dzo+f Koo 2ba (o) dzo = " ED £ o), (12)
., Z—2Zg 2,
22 b 22 1
j (20) d20+f Ki(z,20)by(20) dzo = ?T_(EL)F[(Z). (13)
2, 2— 29 7, iy

n and t refer to the positive normal and tangential directions to the crack. 4, and b, are
defined as:

b, = b,cos §—b,sin 0, (14)
b, =b,sin f+b, cos 0, (15)
where 8 is the angle of the crack as shown in Fig. 2.

The first integrals contain the Cauchy singular portion of the stresses due to distribution
of dislocations. K, and K, in the second integrals, are the bounded kernels which represent
the interaction between the crack and the elliptic inclusion. They are in the n and t directions
respectively. Some portions of K, and K become unbounded when the crack touches the
interface between the inclusion and the matrix. This situation requires a separate analysis

as discussed in Erdogan and Gupta (1975) and is not treated here. K, and K, can be obtained
from eqns (9)—(11):

Kb, = 6,08’ 0+0,,,sin’ 0+ 20,,, sin 0 cos 0, (16)
Kb, = (g,,,—0,,;)sin 0 cos 0 +0,,,(cos’ § —sin® 6). amn

b, and b, are also contained in ¢,., 6,, and o,,,. The terms on the right-hand side of the
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integral equations [eqns (12) and (13)], are the stresses in region 1. due to far field loading
and in the absence of the dislocations.

4. THE PROBLEM OF AN ELASTIC ELLIPTICAL INCLUSION IN A MATRIX WITHOUT A
CRACK

To solve the crack—ellpitical inclusion interaction problem, the solution of the problem
of an elliptical inclusion inserted in an infinite matrix is needed. This solution becomes the
right-hand side of eqns (12) and (13). The system will be subject to stress o, at infinity as
shown in Fig. 2. The solution can be obtained by following the method given by Musk-
helishvili (1953) {see also Qaissaunee (1992)]. The complex potentials for region 1 are

U =a ({+al (18)
) = b L+b L (19)
a, = Roy/4 and b, = Roy/2(m/2—e ™). a.., and h_, are found using the traction and

displacement continuity along the elliptical boundary between regions 1 and 2, the inclusion
and the matrix, in the absence of a crack :

i
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and 6 is the stress at infinity. ‘
By using the potentials given in equs (18) and (19) and eqns (20)—(27) the stresses
outside the inclusion, the right-hand sides of the integral equations, are found.
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5. SOLUTION

The integral equations can be reduced to a standard form by the substitutions

Zy—2, Zy2Z4

Zo= "> Eot 3 (28)
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2= e P (29)
Equations (25) and (26) can now be written in the form:
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where ¢ = (z,—2,)/2.
To find a unique solution to the integral equations, it is necessary to impose an
additional condition such as the crack closure condition:

i
f_‘ by(£o) d&o = 0, (32

1
f_ Bil&o)déo = 0. (33)

The unknown functions can be defined as follows:

baEo) = 20 (34)
—a
Bi(go) = 260 (35)

J1=&

which gives the square root singularity for a crack tip surrounded by a homogeneous
medium. The system of singular integral equations is solved by the method described by
Gerasoulis (1982). The interval [—1,1] is divided into 2n equal parts with 2» collocation
points and 2n+ 1 integration points. Piecewise quadratic polynomial representation of the
singular and non-singular parts of the integral equation is used to discretize the integral
equations into a set of algebraic equations. The strengths of the stress singularity at the
crack tips are characterized by the stress intensity factors. They are related to the dislocation
density functions as follows:

2 1 .
Ki(z) = § o lim [2(:-2)] 6, @), (36)
Ki(e2) = {2 lim R —2] b2, @
Ka(e) = o fim 261 -2] 5,2, (@)
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Table 1. Stress intensity factors for a crack interacting with a circular

inclusion, m=00, 0=00° «x, =16, x,=18, i=090.0"

2a = x3—-x,, 2b=x,+x,, ¢/R=10 comparison of results of
Erdogan and Gupta (E&G) and Anlas and Santare (A&S)

u:=00 Halpy =123
bla E&G A&S E&G A&S
3.2 2.274 2276 0.827 0.834
3.5 1.722 1.721 (.874 (.881
4.0 1.394 1.394 0.918 0.925
5.0 1.174 1.174 0957 0.962
6.0 1.099 1.099 0.973 0.977
8.0 1.045 1.045 0.987 0.989
2w, ,
Ku(zy) = r‘l tim [2(z —2,)]?hi(2). 39)
4Ky o

K; and Kj; are mode I and mode II stress intensity factors, respectively.

6. RESULTS

This analysis can be used to predict crack propagation in short fiber reinforced com-
posites. The effect of the fiber on the crack can be measured by evaluating the stress intensity
factors for different crack fiber geometries. Numerical results are given for the stress
intensity factors defined by (36)—(39). Stress iniensity factors for cracks interacting with
elliptical inclusions of different ellipticity m can be solved by changing the parameters in
the solution outlined above. The problem can also be solved for stresses applied at different
angles at infinity. In the following, crack-fiber interactions are studied extensively for
various crack angles and various fiber aspect ratios. The results of m = 0, crack interacting
with a circular inclusion, with uniaxial stresses applied at infinity are compared to the results
presented by Erdogan and Gupta (1975) and are shown in Table 1. The stress intensity
factors are normalized with respect to 00/\/2 which is the stress intensity factor in a
uniaxially stressed infinite plane containing a crack of length 2¢ perpendicular to the
direction of loading.

In Fig. 3, mode I stress intensity factors are given for a straight crack. Results for
different distances from the inclusion are plotted for u./u, — oc, rigid inclusion and elastic
matrix (for example, for Boron—Epoxy, y,/u, = 138), for inclusions having different aspect
ratios. The normalized stress intensity factors converge to 1.0 when the crack is sufficiently
far away from the inclusion. It is seen that vertically oriented elliptical inclusions, m < 0.0,
decrease the stress intensity factors more than the ones that are oriented horizontally,
m > 0.0.

In Fig. 4, a straight crack interacting with elastic elliptical inclusion is shown. To show
the effect of the rigidity on the stress intensity factors, the results are plotted for different
values of shear modulus ratios. Several aspect ratios are plotted. It is shown that the rigidity
of the inclusion is a big factor in the change of stress intensity factors especially for vertically
oriented ellipses. Beyond a y,/u, value of 25 the stress intensity factors stop being affected
greatly, and converge. In other words, after a certain rigidity ratio, the results approach
the results of a rigid inclusion.

SIFs for a circular inclusion, m = 0.0, are given in Fig. 5. In this case the effect of crack
inclination on the stress intensity factor is studied. The ratio of shear moduli, yt,/p,, is 23.08
which is the case of epoxy-aluminum. When the crack crosses over to 50° and above the
stress intensity factors decrease instead of increasing as expected.

Similar results are given in Fig. 6 for a rigid elliptical inclusion. In this case the crack
is at a distance of 0.1 from the interface for each case. But the results are plotted for different
crack angles and for elliptical inclusions with different aspect ratios. The effect of the crack
angle is very big when the crack is close to the interface. For increased values of crack
angles the stress intensity factors almost converge to the same value even for different m
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Fig. 3. Normalized stress intensity factor vs distance from interface, for different values of m,
A =90.0° 2¢/R = 1.0, p,/pt; = 0, k; = 1.6, 8 = 0.0 (Epoxy—Boron).

values. The fact that the SIFs are affected the most at small angles for flat inclusions,
m=0.5,m = 0.7, m = 0.9, can be explained by the shielding effect of the inclusion [see also
Patton and Santare (1990)].

In Fig. 7, the case for a soft inclusion, u,/u, = 1/3, is shown. To understand the effect
of soft inclusions with varying ellipticity and to complete the information given by Fig. 7,

1.0 q
0.9
0.8 1
0.7 1
et 0.6
4
m=-0.1
os4d 000 v~_ 0 TTrTmmmmmm e m=-0.3
"""" m=-0.5
04d 0 TNl T e m=0.1
1 P EXEIEIER m=0.3
0.3 - —-—== m=0.5
0.2 T T -r= T v 1
0 10 20 30

gama

Fig. 4. Normalized stress intensity factor vs rigidity ratio y = #2/py, for different values of m,
A=90.0°2¢/R=1.0,d/R=0.1,x, = 1.6, k, = 1.8, § = 0.0.



1710 G. Ancas and M. H. SanTare

= angle=0.0

...... e anples .0
sremener angle=20.0
=wemees angle=30.0

T e angle=50.0
04 e o e P8
e e angle=60.0
*
o— angle=T700
\"-*'*....u.....__,......w..............-u..........w
027 \
0.0 ¥ T ¥ T ¥ 13 J
0.0 1.0 2.0 3.0
d/R

Fig. 5. Normalized stress intensity factor vs distance from interface, for different crack angles, 8,
m =00, 2¢/R = 1.0, u,/u, = 23.08 (Epoxy~Al), x, = 1.6,x, = 1.8, d/R=0.1.

Fig. 8 is presented. Figure 8 shows the shift in maximum stress intensity factor for different
m values. This figure also explains the overlap that occurs with the introduction of m = 0.0
and m = 0.2 in Fig. 7. Maximum SIF occurs at d/R = 0.1 for a circular inclusion, but when
the crack is further away, for instance when d/R = 0.5, the maximum SIF occurs at
m= 0.2,

1.0+

Ki

angle

Fig. 6. Normalized stress intensity factor vs crack angle, 8, for different values of m, 4 = 90.0°,
2¢/R = 1.0, pafy, — o0, Ky = 1.6, d{R = 0.1,
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Fig. 7. Normalized stress intensity factor vs distance from interface, for different values of m,
A =90.0°% 2¢/R = 1.0, py/p; = 1/3, k, = 1.6, k, = 1.8, @ = 0.0 (Aluminum-Steel).

The stress intensity factors of a crack interacting with a rigid inclusion are compared
with the experimental results given by O’Toole and Santare (1990) and they are in good
agreement. In that study, they used photoelasticity to find the stress intensity factors
for crack tips in polycarbonate (PSM-1) near steel inclusions. The stiffness ratio for the
experimental system is about I' = 80 which is a fair approximation to a rigid inclusion. In
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.......... d/R=0.5
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m

Fig. 8. Normalized stress intensity factor vs ellipticity m, for different values of d/R, A = 90.0°,
2¢/R = 1.0, upfu, = 1/3,x, = 1.6, x, = 1.8, 6 = 0.0.
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the majority of cases, the experimental and analytical results are within a few percent, but
in some cases the difference can be as high as 19%. These differences can be due to
experimental procedure as described in O’Toole and Santare (1990).
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APPENDIX

The constants that are used in the stress potentials are given by :

¢ = 0.0, (Al)
d; = 0.0, (A2)
—a (p—1) i
[ :’(B*ﬂ*')a,k‘*‘”["ﬂ by —31A 4, (A3)
x 1 _ ‘
d*—k:f;ak+Bbr—l\“(TIAl\*‘hllefk)s (A4)
where
B(piri — (B— D qifi) )
= TTE (A3)
R K
by = B(7, A +7 1 B) —am s, (A6)

a_, = mka,
by = m bt qua

re =714 — (B Dt (0 A +7,BY). (A7)



Matrix cracking in composites
P = (B—a)— (B—Dam™,
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B*“( G—m )(c_) ’

q="{o+mil,,
I'e,—k,

o= s
Ik, +1
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b= T, +1°

1713
(A3)
(A9)

(A10)

(ALD)

(A12)

(A13)



